Research Article |
Corresponding author: Wolf U. Blanckenhorn ( wolf.blanckenhorn@ieu.uzh.ch ) Academic editor: Claudia Buser
© 2021 Karin Thüler, Wolf U. Blanckenhorn, Paul I. Ward, Stefan Lüpold, Luc F. Bussière.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Thüler K, Blanckenhorn WU, Ward PI, Lüpold S, Bussière LF (2021) Female accessory gland fluid promotes sperm survival in yellow dung flies. Alpine Entomology 5: 95-100. https://doi.org/10.3897/alpento.5.68501
|
Female and male reproductive traits co-evolve through pre- and post-copulatory sexual selection and sexual conflict. Although males typically transfer many sperm during copulation, only a small proportion reach the fertilization site because females often actively or passively reduce sperm number in their reproductive tract. Males may transfer accessory substances to protect their ejaculates against female selective processes, which benefits males but can harm females. In turn, females may use accessory gland fluids to control paternity or sperm storage. Female yellow dung flies (Scathophaga stercoraria) have paired accessory glands that produce fluids involved in fertilization and egg laying. One proposed function for these fluids is spermicide. Alternatively, female accessory gland fluid may help keep sperm alive to avoid fertilization failure or encourage sperm competition. Using yellow dung flies, we investigated the interaction of female accessory gland fluid with sperm in vitro. Significantly more sperm remained alive when exposed to accessory gland fluid compared to buffer only (63% vs. 44%). We conclude that female accessory gland fluid in yellow dung flies can help nourish rather than kill male sperm, although selective nourishment of sperm is as consistent with cryptic female choice as is selective spermicide.
Reproduction, sexual conflict, Scathophaga stercoraria, sexual selection, sperm competition, spermicide
In species with internal fertilization, only a fraction of the vast numbers of sperm transferred by males tend to ever reach the fertilization site (
The female reproductive tract of insects typically includes a pair of ovaries from which the oviducts emanate to further join and form a common oviduct, one to several spermathecae (i.e., sperm storing organs), and paired accessory glands (
The yellow dung fly Scathophaga stercoraria L. (Diptera: Scathophagidae) is a cool-climate species that is common around livestock (especially cattle) pastures in cold-temperate regions of the northern hemisphere (
Here, we revisited the potential role of accessory gland fluid of female yellow dung fly in sperm viability by using fresh accessory gland fluid to circumvent the possibility of inactivating some important substances by freezing. We predicted two contrasting observations for sperm viability depending on which, if any, of the alternative hypothetical functions for accessory gland fluids is true: compared to a control treatment, we should find more (rather than fewer) live sperm after exposure to accessory gland fluid if accessory glands nourish sperm. In contrast, if the glands promote spermicide, fewer sperm should be alive after exposure to accessory glands than in controls.
We collected flies from a pasture in Fehraltorf, Switzerland (47°23'N, 8°44'E) and maintained them for multiple generations in the laboratory using standard conditions (
To ascertain whether the female accessory gland fluid affects sperm viability, we exposed sperm samples from 30 individual males to both fresh accessory gland fluid mixed with buffer or to buffer alone in a paired design. We incubated 15 µl of the (male) sperm suspension with 30 µl of buffer plus 15 µl of the female accessory gland fluid suspension (or 45 µl of buffer in the control treatment) for a total of 60 µl for 11 ± 2 min at room temperature. Subsequently, we released 30 µl of these mixtures on a glass slide and examined them under a fluorescent microscope. We assessed sperm viability using the LIVE/DEAD Sperm Viability Kit (L-7011, Molecular Probes), which consists of a green membrane-permeant (live) nucleic acid stain (SYBR14, 1 mM in DMSO, diluted 1:50; emission max. 516 nm) and a red stain that penetrates only the damaged membranes of dead sperm (propidium iodide, 2.4 mM in water; emission max. 617 nm). After incubation, we added 5 µl of each stain, vortexed lightly, and incubated the suspension in the dark for 5 min before viewing the sample under the fluorescent microscope. In the rare cases that cells took on both stains, we scored them as dead (
We calculated sperm viability as the proportion of live sperm among all sperm counted in the sample (for plotting), based on 20 randomly taken images (frames) per male at 20× magnification within 20 ± 2 min of dissection (corresponding to 9 ± 1 min after adding the stains). Data were analysed with a binomial generalized linear mixed model with logit-link, implemented in in the lme4 package (
We counted a mean of 258 ± 53 (SD) sperm per male (sums by treatment: buffer dead: 1819; buffer alive: 1453; accessory gland dead: 1520; accessory gland alive: 2955). The proportion of live sperm was higher when sperm were exposed to accessory gland fluid (mean [± 95%CI]: 0.63 [0.57, 0.68]) than in plain buffer (0.44 [0.38, 0.50]; parametric bootstrap P-value = 0.001; Fig.
Proportion of sperm from 30 random Scathophaga stercoraria males remaining alive after in vitro paired treatment with female accessory gland fluid vs. buffer control (red dot = overall mean). Proportions were based on absolute counts of live and dead sperm, which could be distinguished by stain colour, across 20 equal-sized images per male.
Unless there is strict monogamy, which is rare (
Sperm are often short-lived within the female reproductive tract. Sperm survival is primarily a function of sperm quality, motility and longevity, and secondarily depends on the female environment such as her accessory gland fluids. Our experiment supports the latter mechanism (without addressing the first). Studies of bees and ants have shown that male accessory fluids can also prolong sperm viability in the female reproductive tract (
Other studies of insects have found positive effects of female accessory gland fluids on sperm viability and fertilization success.
While our study has clarified one aspect of the function of female accessory glands in yellow dung flies, more work on the physiological and biochemical interactions involved in sperm storage and use, as well as on the reproductive consequences of sperm mortality for male fertilization success and female fitness, is clearly needed to elucidate the multiple facets of sexual conflict and postmating sexual selection in insects.
We thank Ursula Briegel for help in the lab, and Andy Pemberton, Barbara Hellriegel and Giorgina Bernasconi for useful comments on the protocol and methods. This paper is in memory of our colleague and mentor Paul I. Ward, who sadly died during the course of this study. After completion of her PhD Karin Thüler has left the academic circles for an administrative position as a biologist.
Table S1
Data type: excel table
Explanation note: Sperm counts for 30 males under two conditions, buffer (control) & accessory gland suspension (AG), generated by this study.